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ABSTRACT. In this research work, an initial-boundary value problem is considered, which models dynamics in a linear 

homogeneous axially moving tensioned beam under external viscous damping. Both the ends of beam are supported and 

general initial conditions are considered. From physical viewpoint, the problem represents a simple mathematical model. And 

this mathematical model is used to represent damped vertical vibrations of a conveyor belt system. The axial speed of the beam 

is assumed to be positive and constant. It is also assumed that axial speed is small compared to wave velocity and that the 

external damping is relatively small as well. A multiple timescales perturbation technique is used to construct the asymptotic 

approximations of the analytic solutions. It is discussed in details that the introduced damping does in fact affect the solution 

responses, and that the damping generated in the system does not depend on the mode numbers n. 
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INTRODUCTION 
The vibratory systems cover almost all mechanical and 

structural systems. Elastic systems, which are moving axially, 

are one of them.  These axially moving systems have wide 

range of applications, for e.g. conveyor belts [1,2], elevator 

cables [3-5], band-saw blades, aerial cables, magnetic tapes, 

power-transmission chains, plastic films, textile fibers, paper 

sheets, crane and mine hoisting cables [6], and pipes 

transporting liquids and gases [7]. To meet manufacture and 

design, there are several challenges in technological 

applications. Therefore, it is important to obtain better 

insights into the dynamics of these complicated systems. The 

main goal of applied mathematicians, mechanical and civil 

engineers and, physicists is to reduce the vibration in these 

devices because vibrations cause damage to these systems. 

The study and the analysis of transversal vibrations of axially 

moving materials has been a challenging subject, which has 

been studied for many years by researchers and scientists and 

is still of great interest today. The fundamental work for the 

axially moving systems was done in Ref. [8], where the 

moving string and the moving beam with effect of tension for 

different boundary conditions were investigated. The 

transversal oscillations of string-like equation have been 

discussed in details in early works as given in Refs. [9-11]. 

The horizontal velocity is one of the important characteristics 

of axially moving systems. In the literature, velocity (constant 

as well as time dependent) has been studied and analyzed, see 

for instance, Refs. [12-17]. The responses (free and forced) of 

a traveling beam were investigated in Ref. [18]. In Ref. [19], 

the author formulated equations for traveling string with 

time-changing velocity. In Refs. [20,21]  approach of two 

timescales perturbation with application of the Fourier series 

and the Laplace transform technique was used to build the 

solutions for the string-like and beam-like equations. The 

transversal vibrations of an axially moving externally damped 

beam have been investigated. The beam is simply-supported 

at both ends, whereas the general initial conditions (ICs) are 

considered and the exact approximations of the analytic 

solutions will be constructed, Refs. [22,23]. The use of 

external damping can be effective to suppress the oscillation 

amplitudes and this will be highlighted in detail, and that the 

damping rate generated in system does not depend on the 

mode numbers n. The use of external viscous damping is new 

idea in construction of approximations of oscillations for 

these type of problems. The paper is organized as follows. In 

section 2 the governing equations of motion are established. 

In section 3 asymptotic approximations for solutions of IBVP 

are obtained by making use of the method of two timescales 

perturbation. In section 4 concluding remarks will be 

presented in detail. 

Governing Equations of Motion 
Consider a uniform axially moving beam of mass density ρ, 

cross-sectional area A, moment of inertial I, flexural rigidity 

EI, damping coefficient  ̅, and uniform tension T. A stretched 

beam is simply-supported at     and    . The functions 

     and      express the displacement and velocity at 

   , respectively. The beam travels at the uniform constant 

axial speed   ̅ between a pair of pulleys that are a distance L 

apart, as shown in Fig. 1. It is assumed that ρ, A, EI, T,  ̅, and 

 ̅ are positive. Gravity and other external forces are not taken 

into account. The equation, which describes the displacement 

of beam under external viscous damping, is given by 

 
      ̅      ̅         

  

  
     

  ̅     ̅       

(1) 

The BCs and ICs are given by 

                                
        

                              

(2) 

where   √
 

  
 is the wave speed. The quantaties: 
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 are used in order to put Eqs. (1) and 

(2). Thus, the Eq (1) into nondimensional form becomes, 
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(3) 

with BCs, 

                         
                  

(4 
) 

and ICs, 

                               
      

(5) 

The asterisks describing the dimensionless quantities are 

neglected in Eqs. (3)-(5), and henceforth. In this paper, IBVP 

(3)-(5) for        will be studied and formal approximations 

will be constructed. 

Analytic Approximations 
In this section, an approximation of the solution of the IBVP 

(3)-(5) will be constructed by using a two timescales 

perturbation method, for details interested reader is referred 

to Refs. [22,23]. Horizontal velocity   ̅ of beam is assumed to 

be small and O(ε), which is,      , where   is 

dimensionless parameter. We assume that    ̅  is small 

compared to     and     , that is,      . Based on these 

assumptions, Eqs. (3)-(5) can be written as follows 

               

                

              

(6) 
 

the BCs, 

                            
                            

 (7) 

 and the ICs, 

                               (8) 
In two timescales method          is supposed to be a 

function of  x,    and   . For this reason, 

                        (9) 
By using Eq. (9), transformations given below, are required 

for time derivatives: 

              

                            

(10) 

By substituting Eqs. (9)-(10) into Eqs. (6)-(8), the problem in 

  up to      is given as follows: 

    
           

         
        

              

                                         
                   

                    
         

     
                

(11) 

The function          not only can be approximated by the 

asymptotic expansion, but also the function          
             can be approximated by the powers of   in the 

asymptotic expansion, that is: 

                                      
      

(12) 

and that all the   
                  are found in such a way 

that no secular terms arise. It is also assumed that the 

unknown functions            . Now, by substitution of Eq. 

(12}) into Eq. (11), and then equating the powers of 

         , and neglecting the    and the higher powers of  , 

it follows 

       
     

        
    

                 
                     

     
           

                   
               

(13) 

and, 

       
     

        

         
        

      
  

                 
         

            
     

           

                
       

      
           

(14) 

It can be observed that in     -problem the partial 

differential equation and the BCs are linear and 

homogeneous, the separation of variables method can be 

applicable. Following product solutions of the form are 

assumed: 

                           (15) 
By substituting Eq. (15) into Eq. (13), it follows 

        
       

        
 

   

 
 

     

 
    

(16) 

A separation constant    is introduced so that the time-

dependent part of the product solution oscillates if    . It 

can easily be shown that the the eigenvalues turn out be real 

and positive. Eq. (16) yields two ordinary differential 

equations (ODEs), that is, a time-dependent part 

                           (17) 

and a space-dependent part 

 
       

 

 
       

 

 
        

(18) 

The four homogeneous BCs in Eq. (13) imply that 

                            (19) 
Thus, Eqs. (18) and (19) form a BVP. Instead of first 

studying the Eqs. (18)-(19), let us first analyze the time-

dependent equation (17). Thus, the general solution of Eq. 

(17) is a linear combination of sines and cosines in   , that is, 

                   (√   )

           √      

(20) 

and it oscillates with frequency √ . The values of   

determine the natural frequencies of the oscillations of a 

vibrating beam. Analyzing the BVP (18)-(19) with      
    (  to be determined), following characteristic equation is 

obtained 

 
   

  

 
 

 

 
    

(21) 

Note that for the cases             the solutions 

       . Thus,             are not the eigenvalues of 

the problem. Thus nontrivial solutions of Eq. (18) are given 

by 

                           
                      

(22) 
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where                 are the constants of integration, and 

where   √
(  √     )

  
        √

   √     

  
. Applying the 

BCs (19), it is observed that the nontrivial solutions are found 

when        , and when 

                               (23) 

Eq. (23) implies √  √     √        for   

      . From Eqs. (18), (19) and (23) the n-th eigenfunction 

      corresponding to the n-th eigenvalue    can be 

determined and is given by (up to a multiplicative constant) 

 
               

       

        
           

(24) 

The general response of     -problem is 

            

 ∑(          (√    )

 

   

           (√    ))       

(25) 

where                     are unknown Fourier 

coefficients. By eigenfunctions’ orthogonality properties and 

the ICs given in Eq. (13), values of the constants 

                  can easily be obtained. The 

eigenfunctions                    satisfy the following 

orthogonality properties, as given by 

 
         ∫              

 

 

   
(26) 

Thus, by using the ICs described in Eq. (13) and the 

orthogonality properties of the eigenfunctions as given in Eq. 

(26), it follows that 

 
       

∫            
 

 

∫   
      

 

 

  
(27) 

 
√         

∫            
 

 

∫   
      

 

 

  
(28) 

Now, to solve the     -problem, the eigenfunction expansion 

method is introduced. In this method it is assumed that the 

solution             can be expressed as the linear 

combination of the orthogonal eigenfunctions      . 

Therefore, it is reasonable to assume the following form for 

the solution            , such that 

 
            ∑               

 

   

  
(29) 

where           are unknown generalized Fourier 

coefficients. Thus, by substituting the Eq. (29) into the     -
equation, it follows that, 

 
∑ (      

       

 

   

            )     

         
        

      
  

(30) 

By substituting Eq. (25) into Eq. (30), it follows that 

 
∑ (      

       

 

   

            )     

 ∑ { (       

 

   

      
)     

       
  

    }  

(31) 

 where          

            √     

            √       

(32) 

Multiplying both sides of Eq. (31) by  -th eigenfunction 

     , then by integrating both sides of the so-obtained 

equation from            with application of the 

orthogonality properties of the eigenfunctions, it follows that, 

       
     

         
      

       
   

   ∑     
   

 

       

 (    
                  

         )√     (√    )

 (    
                  

         )√      √     

 ∑ {  √  (          (√    )
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(33) 

where, 
    ∫   

            
 

 

 
(34) 

The solution of Eq. (33) consists the homogeneous solution 

and the particular integral, that is, 
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(     
 

 
)       

)      (√    )

 (   
     

 (     
 

 
)       )      (√    )  

(35) 

It can be seen in Eq. (35) that the solutions are unbounded in 

  . This behavior of the solutions is known as the secular 

behavior. For secular free behavior, following conditions are 

used in Eq. (33), 

       
                           

    
      

                           
    

(36) 

The above equations are uncoupled ODEs and they yield, 
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(37) 
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 (     

 
 
)    

where                   are given in Eqs. (27) and (28). 

Now let us determine the values of     from Eq. (34). Using 

integration by parts it follows from Eq. (34) that 

        
    | 

    
       

      (38) 
It can be observed in Eq. (24) that                   
 , so that      . Thus, by using Eqs. (37) and (38) into Eq. 

(25), the zeroth order approximation is given as, 

            

 ∑  
 
 
  (         (√    )

 

   

          (√    ))       

(39) 

Now by substituting       into the expression –
 

 
  , and 

then by dividing expression by  , it yields that the damping 

parameter for all oscillations modes can be expressed by, 

 
     

 

 
  

(40) 

Thus, from Eq. (33) with Eq. (36), it follows that 

       
     

 ∑ (  √  (      (√    )

 

       

       (√    )))     

(41) 

The solution of Eq. (41) is given by 

          

           (√    )

           (√    )

 ∑
  √     

     

(      (√    )

 

       

       (√    ))   

(42) 

where                     are still unknown functions. 

Thus, Eq. (29) with Eq. (42) can be expressed as 

             

 ∑ {          (√    )   
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 ∑
  √     
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       (√    ))}        

(43) 

By using the inner product (26) and the ICs from Eq. (14) 

into Eq. (43), it follows that 
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  √     

     

      

 

       

  
(44) 

 √        

  ∑
       

     

      

 

       

 
 

 
        

(45) 

It can be observed that the solution (43) still contains 

infinitely many undermined functions 

                                 . It is reasonable to 

take                and               . So far, a 

formal asymptotic approximation 

                                    has been 

constructed for       . The solutions 

                            are continuously differentiable 

two times with respect to     four times with respect to  , and 

infinitely many times with respect to   . 

 
REFERENCES 
[1] Malookani, R. A., and van Horssen, W. T., 2015. “On 

resonances and the applicability of Galerkin’s truncation 

method for an axially moving string with time-varying 

velocity”. Journal of Sound and Vibration, 344, pp. 1-

17. 

[2] Gaiko, N. V., and van Horssen, W. T., 2015. “On the 

transverse, low frequency vibrations of a traveling string 

with boundary damping”. Journal of Vibration and 

Acoustics, 137(4), August, p. 041004110. 

[3] Sandilo, S. H., and van Horssen, W. T., 2015. “On a 

cascade of autoresonances of an elevator cable system”. 

Nonlinear Dynamics, 80(3), May, pp. 1613–1630. 

[4] Zhu, W. D., Ni, J., and Huang, J., 2001. “Active control 

of translating media with arbitrarily varying length”. 

Journal of Vibration and Acoustics, Transactions of the 

ASME, 123(3), July, pp. 347–358. 

[5] Zhu, W. D., and Chen, Y., 2006. “Theoretical and 

experimental investigation of elevator cable dynamics 

and control”.Journal of Vibration and Acoustics, 

Transactions of the ASME, 128(1), February, pp. 66–

78. 

[6] Kaczmarczyk, S., and Ostachowicz, W., 2003. “Transient 

vibration phenomena in deep mine hoisting cables. part 

1: Mathematical model”. Journal of Sound and 

Vibration, 262(2), April, pp. 219244. 

[7] Kuiper, G. L., and Metrikine, A. V., 2004. “On stability of 

a clamped-pinned pipe conveying fluid”. Heron, 49(3), 

pp. 211–232. 

[8] Wickert, J. A., and Mote, C. D., Jr., 1990. “Classical 

vibration analysis of axially moving continua”. Journal 

of Applied Mechanics, Transactions of the ASME, 

57(3), September, pp. 738–744. 

[9] Mahalingam, S., 1957. “Transverse vibrations of power 

transmission chains”. British Journal of Applied 

Physics, 8(4), April, pp. 145–148. 

[10] Sack, R. A., 1954. “Transverse oscillations in traveling 

strings”. British Journal of Applied Physics, 5(6), p. 

224226. 

[11] Archibald, F. R., and Emslie, A. G., 1958. “The 

vibration of a string having a uniform motion along its 



Special issue 

   

Sci.Int.(Lahore),28(4),4123-4127,2016 ISSN 1013-5316;CODEN: SINTE 8 4127 

July-August 

length”. ASME Journal of Applied Mechanics, 25(1), 

pp. 347348. 

[12] Sandilo, S. H., and van Horssen, W. T., 2012. “On 

boundary damping for an axially moving tensioned 

beam”. Journal of Vibration and Acoustics, 

Transactions of the ASME, 134(1), February, pp. 

0110051-8. 

[13] Pakdemirli, M., and Oz, H. R., 2008. “Infinite mode 

analysis and truncation to resonant modes of axially 

accelerated beam vibrations”. Journal of Sound and 

Vibrations, 311(3–5), April, pp. 1052–1074. 

[14] Suweken, G., and van Horssen, W. T., 2003. “On the 

transversal vibrations of a conveyor belt with a low and 

time-varying velocity. part I: the string-like case”. 

Journal of Sound and Vibration, 264(1), June, pp. 117–

133. 

[15] Ponomareva, S. V., and van Horssen, W. T., 2007. “On 

the transversal vibrations of an axially moving string 

with a time-varying velocity”. Nonlinear Dynamics, 

50(1–2), January, pp. 315–323. 

[16] Oz, H. R., and Boyaci, H., 2000. “Transverse vibrations 

of tensioned pipes conveying fluid with time-dependent 

velocity”. Journal of Sound and Vibration, 236(2), 

September, pp. 259–276. 

[17] Suweken, G., and van Horssen, W. T., 2003. “On the 

weakly nonlinear, transversal vibrations of a conveyor 

belt with a low and time-varying velocity.”. Nonlinear 

Dynamics, 31(2), January, pp. 197-223. 

[18] Chakraborty, G., Mallik, A. K., and Hatwal, H., 1999. 

“Non-linear vibration of a travelling beam”. 

International Journal of Non-Linear Mechanics, 34(4), 

July, pp. 655–670. 

[19] Miranker, W. L., 1960. “The wave equation in a medium 

in motion”. IBM Journal of Research and Development, 

4(1), January, pp. 36–42. 

[20] Sandilo, S. H., and van Horssen, W. T., 2014. “On 

variable length induced vibrations of a vertical string”. 

Journal of Sound and Vibration, 333(11), May, pp. 

24322449. 

[21] Ponomareva, S. V., and van Horssen, W. T., 2009. “On 

the transversal vibrations of an axially moving 

continuum with a time-varying velocity: Transient from 

string to beam behavior”. Journal of Sound and 

Vibration, 325(4–5), September, pp. 959–973. 

[22] Nayfeh, A. H., 2000. Perturbation Methods. John Wiley 

and Sons, New York. 

[23] Kevorkian, J., and Cole, J. D., 1996. Multiple Scale and 

Singular Perturbation Methods.   Springer-Verlag, New 

York. 


